IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 41 (2004) 559-568

Bifurcations of SDOF mechanisms using catastrophe theory

Andras Lengyel, Zhong You *

Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
Received 30 July 2002; received in revised form 2 June 2003

Abstract

This paper deals with the singularities which occur on the compatibility paths of single degree of freedom finite
mechanisms consisting of rigid bars and pin joints. We first examine the analogy between the bifurcations along the
compatibility paths of mechanisms and those appeared in the equilibrium paths of elastic structures. Based on it, we
propose that the compatibility conditions can be analysed in the same way as the equilibrium equations using the
elementary catastrophe theory. A number of mechanism examples are given to illustrate that common cuspoid
catastrophe types also exist in the compatibility paths of mechanisms.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Some of the modern structural systems are in fact mechanisms. They contain internal mobility so that
their shape or geometry can be controlled to suit particular needs. Many large space deployable structures
belong to this category because they need to be folded up for transportation and expanded when reaching
orbit. A very important part of research into such structures involves design of the internal degree of
freedom which allows folding and expansion to take place in a controllable manner. However, some of such
designs may end up producing structures with singularities, resulting in that the structure opened up to a
configuration which differs from the desirable one. Hence, it is necessary to study singularities in mecha-
nisms.

Singularities are not new to structural engineers. They exist in the equilibrium paths of elastic structural
systems. Consider a general conservative structural system, described by the total potential energy function
V(xi, 1)) (1<i<n; 1<1<r) where x; represents a set of n variables, which could be the generalized coor-
dinates, and #; denotes a set of » control parameters, such as the loading parameter. A set of n equilibrium
equations can be obtained when V' becomes stationary, i.e.,

ovjox;=0 (=1,2,...,n). (1)
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(a)

Fig. 1. Four fundamental critical points of equilibrium paths: (a) limit point, (b) asymmetric bifurcation, (c) stable symmetric
bifurcation and (d) unstable symmetric bifurcation.

These equations also represent a set of equilibrium paths in the (x;,#) coordinate system. The study of the
stability of these paths yields four common modes of instability, and the loss of stability may occur at a
limit point or at three modes of bifurcation: namely the asymmetric, symmetric stable, and symmetric
unstable, see Fig. 1(a)-(d) (Thompson and Hunt, 1973, 1984).

Similar approach can be applied to study of mechanisms. The motion of a mechanism can be described
by its compatibility equations, which define the compatible positions of a mechanism in terms of its state
variables, or compatibility paths when the equations are plotted in the state-variable space. Litvin (1980)
and Tarnai (1999) discovered that the compatibility paths of some simple four bar chains produced
asymmetric bifurcations, just like that in the equilibrium path of an elastic structural system. Tarnai has
drawn attention to the striking similarity between the asymmetric bifurcation of equilibrium paths of elastic
structures and that of compatibility paths of mechanisms. Lengyel and You (2003) have created an analogy
between the two fields and found mechanism examples which produce other bifurcation modes. During the
course of this study, two problems were encountered. Firstly, it was found that different set of state
variables may not always serve equally. This can be illustrated by a simple planar bar and joint mechanism
shown in Fig. 2(a). The mechanism consists of six bars. The length of two supported bars, 0,4 and OB, is
unity while that of the others v/2. Node D is only allowed to move vertically. So the linkage is symmetric in
its basic configuration. If angles « and ¢ are chosen to describe the motion of the linkage, we obtain the
symmetric bifurcations shown in Fig. 2(b). However, if ¢ is replaced by x4, the x coordinate of node 4, the
graph becomes different, see Fig. 2(c), in which the symmetric bifurcation is no longer visible. Secondly, we
discovered that along the straight path in Fig. 2(b), the Jacobian matrix has reduced rank, suggesting the
existence of singularity. However, no obvious bifurcation could be observed.

Similar problems appear in the stability theory. Different sets of state variables provide different equi-
librium paths, which may even become fundamentally different. For example, in buckling of a cylindrical
shell, if the vertical force and the longitudinal compression are chosen as state variables, the planar plot of
the compatibility paths is characteristically different from the three-dimensional one obtained by including
a third state variable: the radial displacement (von Karman and Tsien, 1941).

Based on these examples, it seems that the graphs of equilibrium or compatibility paths alone may not be
sufficient to reveal the true nature of the behaviour of the object we study. A new approach is required,
which, in the stability theory of structures, is provided by the application of the elementary catastrophe
theory (Gilmore, 1981; Thompson and Hunt, 1984; Géspar, 1999).

The catastrophe theory in general was developed by Thom (1975) to study sudden changes in a function
due to small changes in the parameters of a system. The elementary catastrophe theory (Gilmore, 1981;
Poston and Stewart, 1978) deals with the equilibriums of gradient systems, i.e., systems which could be
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Fig. 2. A six-bar planar mechanism: (a) basic configuration, (b, ¢) compatibility paths obtained using two different sets of parameters.

described by (1). The stability properties of the equilibrium may be determined from the Hessian matrix
of V. If the Hessian matrix is not singular, a suitable diffeomorphism will transform V' into the Morse
canonical form. If the Hessian is singular, then some of the eigenvalues vanish and the potential can be split
to a Morse and a non-Morse part due to Thom splitting lemma. However, it is still possible to find a
canonical form for the non-Morse part of the potential. Thom’s theorem classifies the typical singularities
of forms with less than six parameters. Depending on the number of vanishing eigenvalues, canonical forms
of one or two variables are obtained. The one variable forms, called the cuspoid catastrophe types, are
listed in Table 1 according to their common names and symbolic notations given by Arnol’d. The equi-
librium forms can be easily derived from the canonical forms.

In Table 1, x denotes the single variable and #'s are the parameters. The highest order term of the
canonical form, independent from the parameters, is called a catastrophe germ and the rest are the per-
turbation terms. If the potential energy function of a structure at a critical point is locally equivalent to one
of the canonical forms, then the potential is at a catastrophe point of that type.

The object of this paper is to show that the elementary catastrophe theory can also be used in analysis
of the compatibility conditions in mechanisms where singularities occur. The focus of the study is on the
bar-and-joint mechanisms which form an important part of in the design of strain-free deployable
structures. We will show that all of the cuspoid catastrophe types also exist in the compatibility of
mechanisms, and thus, the singularities can be analysed in the same way as in stability of elastic struc-
tures.

Table 1
Canonical and equilibrium forms for the cuspoid catastrophe types
: e ov
Type Name Canonical form V Equilibrium form >
X
A5 Fold X +ux 3+
A Cusp +(x* + 63 + 11x) +(4x° 4 26x + 1)
Ay Swallowtail X+ t3x3 + lzxz + hix Sxt 4 3t3x2 +26bx+ 4
As Butterfly E(x8 + t4x* + 3% + 3% + 11x) (637 + 414 + 3637 + 26x + 1)

Ag Wigwam X+t + bt 4+ 63+ 63 Fx Tx® + Stsx* 4 414> + 36x7 4+ 26x + 1
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It should be pointed out that the general motions of a rigid body has been a subject of recent research,
which were well summarised by Donelan et al. (1999) and Xiang (1995). The study of compatibility pre-
sented here is fundamentally different. It gives the behaviour of the system rather than the trajectories of
some particular points on a rigid body.

The outline of the paper is as follows. Section 2 explores the similarities of structural systems and
mechanisms and proposes a way of how catastrophe theory can be used for the analysis of the compati-
bility. Section 3 presents mechanisms that correspond to various catastrophe types, such as the fold, the
cusp and the swallowtail. Section 4 discusses other catastrophe types. Finally, a summary of the analogy is
given in Section 5.

2. Application of catastrophe theory to mechanisms

Here we deal with finite mechanisms with only one degree-of-freedom. Though many variables and
constraint equations may be needed to describe the mechanism globally, it is always possible to analyse the
local behaviour in terms of only two suitably chosen variables. One constraint condition, i.e., the com-
patibility equation, is needed that expresses the relationship between the two variables.

In stability of elastic structures, the equilibrium of elastic structures is the gradient of the total po-
tential energy function. Critical points of an equilibrium equation are classified by the local form of the
potential energy (Thom’s theorem). Similarly, the compatibility condition can be classified on the basis
of the analogy between equilibrium and compatibility. Thus, a singular position of a mechanism can be
regarded as equivalent to a catastrophe type if the compatibility condition is locally equivalent to the
equilibrium forms of that particular catastrophe. For example, for a mechanism with two kinematic
state variables and one compatibility condition, if the compatibility condition at a bifurcation point can
be transformed to the second equilibrium form in Table 1, then the mechanism is equivalent to a cusp
catastrophe (43).

It should be pointed out that various formulations of potential energy function have been proposed for
mechanisms, none yields the compatibility equation as its gradient (Tarnai, 1990; Géradin, 1999). A simple
approach would be defining

Ving) = / Flx, 1) dx + G(t) 2)

as the potential function, where F is the compatibility equation and G is a function of parameters only.
However, as the compatibility equations usually are highly non-linear, such an integration would yield an
extensive function that might have no physical meaning. This reinforces our chosen approach.

In order to express the compatibility condition in the forms listed in Table 1, it needs to be formulated in
terms of a variable x and parameters ’s. Therefore one of the two state variables should be taken as a
variable and the other as a control parameter. Such a distinction can be done by considering the actuation
of the mechanism. For instance, if the mechanism is a part of a machinery which is driven by an actuator
attached to an element, then the state variable associated with the displacement of that element can be
regarded as a control parameter. More parameters are needed when the mechanism has geometric im-
perfections.

In the following analysis, examples are presented which have different types of catastrophe. We first
establish a compatibility function for a given mechanism, then the function is expanded into Taylor series at
the critical points. The higher order effects of the parameters are ignored, and therefore the series is
truncated accordingly. The remaining items are then compared with the equilibrium forms given in Table 1,
as have been done in the structural stability theory.
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3. Examples
3.1. The fold catastrophe
Consider the kite-shape four-bar mechanism in Fig. 3(a) that Tarnai (1999) used to demonstrate

asymmetric bifurcation. Taking angles o and f as state variables and assuming that the supported bars are
rigid, the compatibility condition for the remaining bar is

F=1/(a+bcosp—acos) + (bsin f— asinx)’ — b = 0. (3)
Bifurcation occurs at (« = 0, f = 0), see Fig. 3(b). Expanding (3) into Taylor series at that point yields
b
F:M(xz—aaﬁ—f—&, 4)
2b
where R; is the residual term containing terms of third order and higher. Applying a linear transformation:
2ab a’>+ab—2b

Terarn” P ®)

In terms of the new variables the compatibility is written as

2ab :

F=v—|——"— 2+ R;. 6
! (a2+ab+2b)v+ ’ 6)

Taking u as a variable and choosing a parameter proportional to the second term of (6), the first
equilibrium form in Table 1 is obtained. Thus the bifurcation point is equivalent to a fold catastrophe (4,).

Geometric imperfections of the mechanism can also be considered, which lead to new parameters in (3).
For instance, assuming that the length of the coupler bar varies by a small ¢, the compatibility condition
now becomes

F= \/(a+bcosﬂ—acosoc)2+ (bsin f —asina)’ — (b+¢) = 0. (7

Fig. 3. A kite-shape four-bar mechanism: (a) basic configuration. (b) Compatibility path, thick lines denote the original configuration,
continuous and dashed thin lines refer to imperfect geometries obtained by modifying the length of the coupler bar in the negative or
positive sense, respectively.
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Through the same procedure, we obtain

5 2ab .,
F:u — m U+8+R3. (8)

Treating u as the variable and the rest as the parameter, the fold catastrophe is obtained again.
Imperfections in other bars can be dealt with as well. However, they give higher order terms, which are
omitted if only the linear effect of the imperfections are considered.
The fold is a common catastrophe type occurring in stability theory. A typical example is the stability of
a rigid-rod spring system, in which the rod in the system is hinged at one end and connected to an inclined
spring at the other end (Koiter, 1945).

3.2. The swallowtail catastrophe

Let us revisit the six-bar linkage in Fig. 2(a). Considering its symmetric layout we can set up a single
compatibility equation for bar BC using two state variables o and ¢:

F(oc,q&)z\/(2—2c0s¢—\/Ecosoc)2+(\/§sinoc)2—\/5:0. 9)

It has been shown (Lengyel and You, 2003) that this mechanism produces two types of symmetric
bifurcations at (¢ =0, « = n/2) and (¢ =0, o = —n/2), see Fig. 4, which occur when nodes 4 and B

Y

Fig. 4. Compatibility path of the six-bar linkage. Thin and dash lines denote positive and negative imperfections of bar AC,
respectively.
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(a) (b)

Fig. 5. Configurations of the six-bar linkage corresponding to (a) the bifurcation point (« = 7/2, ¢ = 0), and (b) near the bifurcation
point with an constant o.

coalesce at the origin of the coordinate system and bars AC and BC are pointing either upward or
downward along the symmetry line at the centre, as shown in Fig. 5(a).
Expanding (9) into Taylor series at the bifurcation point (¢p = 0, o = /2) gives

V2
4
where & = o — /2 and Rs denotes the terms of order higher than four. Regarding ¢ as a variable, Eq. (12a)
becomes equivalent to the third equilibrium form in Table 1, i.e., it is equivalent to a swallowtail catastrophe

(A4).

All the other terms in the third equilibrium form of Table 1 can be obtained by introducing geometric
imperfections. For simplicity, we shall only introduce ¢;, ¢, and & which represent the change in length of
bars 0,44, AC and BC, respectively. These imperfections perturb the symmetry of the mechanism so that the
compatibility condition now has become a complex and lengthy expression non-linear in its variables and
parameters. The Taylor series now is

F=Y2¢"+a¢> +Rs, (10)

2 2 1
F:%(b“_’_(a—%gl>q§2+<—Zg?)¢+(£2—83)+R5. (11)
Let us introduce new parameters ¢, t, and #3:
1 2
1 = & — &3, l‘zifzs%, l3:&7%81. (12a)

Eq. (11) now contains all the terms in the third equilibrium form in Table 1.

The order of the compatibility condition of the six bar mechanism is higher than the four bar kite-shaped
mechanism. The higher-order term is the result of the symmetry of the perfect configuration at the
bifurcation point, see Fig. 5(a). Nodes 4 and B have the same y coordinate and the distance contains a
second-order term of ¢. When o remains constant, the compatibility condition for BC can be obtained from
the right-angled triangle ABC resulting the term ¢*, see Fig. 5(b).
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The approach based on catastrophe theory presented here helps to analyse and understand the singular
behaviour experienced at the straight compatibility path ¢» = 0, which has been mentioned in Section 1 and
shown in Fig. 4. The singularity is demonstrated by a reduced ranked Jacobian matrix (Lengyel, 2003),
suggesting that a catastrophe of a certain type may occur along that path. Let us carry out the analysis at a
point: (¢ =0, a = o) where oy # £7/2 so that the point in consideration is neither of the bifurcation
points. The Taylor series obtained will be the same as Eq. (10) except that & = o — n/2, which is now a non-
zero constant. Hence the characteristic term of the series is a second-order one, which indicates a fold
catastrophe. In other words, the points along the straight compatibility path correspond to a catastrophe
type which is lower-order than that at the bifurcation points.

The appearance of the fold catastrophe can be easily explained by examining the general form of the
swallowtail catastrophe in the three-dimensional parameter space (¢, t>, t3) because lower order singularities
occur in the neighbourhood of the catastrophe point (Gilmore, 1981; Gaspar, 1999). In a space formed by
t1, 1, and t; the origin represents the swallowtail catastrophe (44); the two-dimensional surfaces are the fold
catastrophe (4,) and the intersection of the surfaces give either a double fold (4, — 4,) or a cusp catas-
trophe (43).

We can also find other fold catastrophe by suitably chosen imperfections (parameters). For example,
when only bar AC is imperfect (¢, > 0), Eq. (12a) becomes

1 = &, th :O, 3 = a. (12b)

Substituting Eq. (12b) into Eq. (11) gives the fold catastrophe, which are in fact the two limit points shown
by the imperfect compatibility paths in Fig. 4.

Producing a cusp catastrophe requires the combined variation of all three parameters. However, it has
been found that the solution lacks obvious physical meaning and will be unlikely encountered in practice
(Lengyel, 2003). This leads the next example where a different type of mechanism is reported which exhibits
the cusp catastrophe.

The swallowtail is one of the less typical catastrophe types in stability theory. Hui and Hansen (1980) has
studied structures exhibiting swallowtail catastrophe.

3.3. The cusp catastrophe

The cusp catastrophe requires creation of a third order variation of the compatibility condition in terms
of its variable, referring to the second form in Table 1. This can be achieved by considering initially a two
bar assembly shown in Fig. 6(a) where 4 is fixed and both bars 4C and BC have unit length. Let node B be
connected to a linkage whose motion is second order and third order along axis x and y, respectively, then
the bifurcation point still occurs and the required compatibility is also obtained.

A linkage that produces such motion is shown in Fig. 6(b). It has an A-shape and all bars with unit
length. The DEFG linkage has one degree-of-freedom and its position is given by angle ¢, which is the
displacement of bar DE from its base position. The motion of the coupler point H in the local coordinate
system is

:£¢ ¢3 Md’ +.

= 2\/—(15 +2qb + -

(13)

A mechanism can be compiled of these two parts as shown in Fig. 6(c). The compatibility condition is
written for bar BC and it is easy to show that the Taylor series expansion is equivalent to the equilibrium
form of the cusp catastrophe in Table 1.
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(@) (b)

Fig. 6. Construction of linkages with higher-order motion. (a) Two-bar assembly with node B moving on a given trajectory.
(b) A-shape mechanism, motion of coupler point H is locally equivalent to that of B. (c) The complete mechanism.

The cusp is a common catastrophe type. The hinged axially loaded elastic bar, known as the Euler
problem is a simple example in stability theory (Thompson and Hunt, 1984).

4. Other catastrophe types

The generation of various paths is also possible by a general method. Kempe (1876) has proved that it is
possible to create a linkwork that traces a planar curve of the nth degree. In order to generate such a curve
he applies the multiplication and the addition of angles and the mirroring and the translation of links.
Kempe’s linkages might prove useful in creating mechanism for higher catastrophe types, however the
investigation into this is beyond the scope of this paper.

Another way of producing higher-order catastrophes types arises from degenerate structures. Gaspar
(1984, 1999) and Tarnai (2002) have shown structures whose secondary equilibrium paths are horizontal,
i.e. neutral in all points. As Gaspar demonstrated, arbitrary cuspoid catastrophe type can be produced by a
suitable disturbation of this infinitely degenerate path at the bifurcation point.

A similar phenomenon for mechanisms has been given by Lengyel and You (2003). A particular case of
the kite-shape four-bar linkage shown in Fig. 3(a) when all bars have equal length can lead to a graph of the
compatibility paths consisting of straight lines given by equations « = 0, & = § and f§ = =, instead of the
curves shown in Fig. 3(b). In Eq. (7) the parameter £ is independent from « and thus arbitrary variation can
be possible by a suitable disturbation.

Further study is required to focus on physical imperfections which may produce higher order catas-
trophe types.

5. Conclusions

Bifurcations of compatibility paths of mechanisms have been studied in the past. The scientific contri-
bution of this paper is that we have analysed the bifurcation points within the compatibility paths of the
single degree of freedom (SDOF) mechanisms with the aid of the catastrophe theory. We have shown that
bifurcations of several mechanisms indeed correspond to various catastrophe germs. We have been able to
demonstrate that the existence of the cuspoid catastrophe types in the compatibility conditions are similar
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to those of the equilibrium equations in the stability theory for elastic structures. An analogy has been
established between the two subjects.

This work has opened the door for detailed study on the kinematic bifurcations of some particular
mechanisms and the influence of parameters (imperfections).
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